14 research outputs found

    Effects of Marine Reserves versus Nursery Habitat Availability on Structure of Reef Fish Communities

    Get PDF
    No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems

    What makes nearshore habitats nurseries for nekton? An emerging view of the nursery role hypothesis

    No full text
    Estuaries and other coastal habitats are considered essential for the survival of early life stages of commercial, recreational, and other ecologically important species. While early designations simply referred to habitats with higher densities of juveniles as nurseries, the definition was improved by arguing that contribution per unit area to the production of individuals that recruit to adult populations is greater, on average, in nursery habitats. However, this and related approaches typically consider critical habitats as individual, homogeneous entities that are static in nature and do not specifically incorporate important dynamics that determine nursery function. The latter include environmental variability, estuarine hydrodynamics, trophic coupling, ontogenetic habitat shifts, and spatially explicit usage of habitat patches and corridors within larger seascapes. Subsequent studies have identified important factors that regulate nursery value, and researchers working independently across the globe have not only supported the advances made in defining the processes underlying nursery function but, as set forth in this narrative, have advanced it while suggesting that much work still needs to be done to improve our understanding of the links between juvenile nekton survival and the estuarine-coastal seascape. We discuss the current nursery role hypothesis and the data supporting (or refuting) it along with the implications for management of estuarine habitats for the conservation or restoration of nursery function

    The use of clear-water non-estuarine mangroves by reef fishes on the Great Barrier Reef

    No full text
    Within the tropics, mangroves and coral reefs represent highly productive biomes. Although these habitats are often within close proximity, the role and importance of mangrove habitats for reef fish species remains unclear. Throughout the Indo-Pacific, reef fish species appear to have few links with estuarine mangrove habitats. In contrast, clear-water non-estuarine mangrove habitats throughout the Caribbean support many reef fish species and may be fundamental for sustaining reef fish populations. But how important are clear-water non-estuarine mangroves for reef fishes within the Indo-Pacific? Using visual surveys during diurnal high tide, the fish assemblages inhabiting clear-water mangrove and adjacent reef habitats of Orpheus Island, Great Barrier Reef, were recorded. Of the 188 species of fishes that were recorded, only 38 were observed to inhabit both habitats. Of these, only eight were observed more than five times within each habitat. These observations provide little indication that the clear-water mangroves are an important habitat for reef fish species. In addition, although based on just a 3-month survey period, we found little evidence to suggest that these areas are important nurseries for reef fish species. The clear-water mangroves of Orpheus Island may, however, provide an additional foraging area for the few reef fish species that were observed to utilize these habitats during high tide. The difference in the importance of clear-water mangroves for reef fishes within this study compared with clear-water mangrove counterparts within the Caribbean is surprising. Although only preliminary, our observations would support suggestions that the patterns reflect the different hydrological characteristics and evolutionary histories of these two biogeographic regions

    What drives ontogenetic niche shifts of fishes in coral reef ecosystems?

    Get PDF
    Ontogenetic niche shifts are taxonomically and ecologically widespread across the globe. Consequently, identifying the ecological mechanics that promote these shifts at diverse scales is central to an improved understanding of ecosystems generally. We evaluated multiple potential drivers of ontogenetic niche shifts (predation, growth, maturation, diet shifts, and food availability) for three fish species between connected coral reef and nearshore habitats. In all cases, neither diet compositional change nor sexual maturity functioned as apparent triggers for emigration from juvenile to adult habitats. Rather, the fitness advantages conferred on reef inhabitants (that is, enhanced growth rates) were primarily related to high prey availability on reefs. However, there exists a clear trade-off to this benefit as survival rates for small fishes were significantly reduced on reefs, thereby revealing the potential value of (and rationale behind high juvenile abundances in) nearshore habitat as predation refugia. We ultimately conclude that predation risk functions as the primary early life stage inhibitor of ontogenetic niche shifts towards more profitable adult habitats in these systems. Furthermore, this study provides a case study for how complex, meta-dynamic populations and ecosystems might be better understood through the elucidation of simple ecological trade-offs.I. A. Kimirei, I. Nagelkerken, M. Trommelen, P. Blankers, N. van Hoytema, D. Hoeijmakers, C. M. Huijbers, Y. D. Mgaya, and A. L. Rype
    corecore